REALCOM-IMPUTE Software for Multilevel Multiple Imputation with Mixed Response Types

نویسندگان

  • James R. Carpenter
  • Harvey Goldstein
  • Michael G. Kenward
چکیده

Multiple imputation is becoming increasingly established as the leading practical approach to modelling partially observed data, under the assumption that the data are missing at random. However, many medical and social datasets are multilevel, and this structure should be reflected not only in the model of interest, but also in the imputation model. In particular, the imputation model should reflect the differences between level 1 variables and level 2 variables (which are constant across level 1 units). This led us to develop the REALCOM-IMPUTE software, which we describe in this article. This software performs multilevel multiple imputation, and handles ordinal and unordered categorical data appropriately. It is freely available on-line, and may be used either as a standalone package, or in conjunction with the multilevel software MLwiN or Stata.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)

Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...

متن کامل

The use of multiple imputation (MI) in cluster randomised trials with suspected missing not at random (MNAR) outcome

Methods Missing-ness in the primary outcome (BMI) was explored in relation to all baseline demographic and post-randomisation variables using logistic regression. An imputation model was developed with cluster (study site) included as a factor together with significant predictors of missing outcome, variables in the primary analysis model, variables used to balance the randomisation and the out...

متن کامل

Combining multiple imputation and meta-analysis with individual participant data

Multiple imputation is a strategy for the analysis of incomplete data such that the impact of the missingness on the power and bias of estimates is mitigated. When data from multiple studies are collated, we can propose both within-study and multilevel imputation models to impute missing data on covariates. It is not clear how to choose between imputation models or how to combine imputation and...

متن کامل

Multilevel models with multivariate mixed response types

We build upon the existing literature to formulate a class of models for multivariate mixtures of Gaussian, ordered or unordered categorical responses and continuous distributions that are not Gaussian, each of which can be defined at any level of a multilevel data hierarchy. We describe a Markov chain Monte Carlo algorithm for fitting such models. We show how this unifies a number of disparate...

متن کامل

Missing Value Estimation of Epistatic Miniarray Profiling Data by Kernel Pca Regression Ensemble Approach

Missing data imputation is a key issue in learning from incomplete data. Various techniques have been developed with great success on dealing with missing values in data sets with heterogeneous attributes (their independent attributes are of different types) referred to as imputing mixed-attribute data sets. Epistatic miniarray profiling (E-MAP) is a powerful tool for analyzing gene functions a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011